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The information channel capacity of neurons is calculated in the stochastic resonance
region using Shannon’s formula. This quantity is an effective measure of the quality
of signal transfer, unlike the information theoretic calculations previously used, which
only characterize the entropy of the output and not the rate of information transfer.
The Shannon channel capacity shows a well pronounced maximum versus input noise
intensity. The location of the maximum is at a higher input noise level than has been
observed for classical measures, such as signal-to-noise ratio.
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1. Introduction

Stochastic resonance (SR) is a noise assisted signal propagation phenomenon which
has recently attracted much attention due to its relevance in biology and sensing
[1–19]. A stochastic resonator (STR) is a special nonlinear system (Fig. 1), which
requires an optimal intensity of noise to be added to the input signal for the best
signal transfer. Originally, the SR phenomenon was characterized by the signal-to-
noise ratio (SNR) at the output of the STR by

SNRout(f) ≡ Ps,out(f)
Sn,out(f)

, (1)
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where Ps,out(f) is the mean-square (MS) signal amplitude of the periodic component
of the output at the signal frequency f , and Sn,out(f) is the power spectral density
(PSD) of the output noise at the same frequency. The noise power is described by
its PSD because it is dependent on its bandwidth, whereas a sinusoidal signal (or
component of) is not. The spectrum of the signal cannot be used since it is periodic
and would result with a Dirac delta function, which means the height of the spike
depends on the frequency resolution of the FFT during measurement. Conversely,
we can not use the power measure for noise as this would include frequencies far
from the signal frequency of interest. This mixed method is valuable because it
gives information about the actual SNR at the signal frequency.

Stochastic Resonator
Noise

Bn,in, Sn,in

Signal

Output
Ps,out, Sn,out(f)

Fig 1. Stochastic resonator. The box represents a nonlinear system combining the signal and
noise, usually involving a threshold. The notion is described in the text.

2. Comparison of metrics

It had been assumed that the SNRout is a sufficiently good way of characterizing
the quality of the output signal and that the best coherence between it and the
input signal is achieved when the ratio of the SNR at the output versus the input
is maximized. That is, the most information about the input signal is transferred
though the system to the output, hence we have maximal information transfer. More
recently, several new methods of characterization, which are similar in nature, have
been proposed using entropy [16–19]. As an example, we discuss Stock’s most recent
method [16] that uses entropy difference,

I = Houtput −Hlost [bits], (2)

where Houtput is the entropy of the noisy output signal and Hlost is the entropy lost
during the transfer of the signal through the STR. This quantity has the same effi-
ciency of output signal characterization as the SNRout and I has a similar potential
for characterization as the ratio of SNRout/SNRin at the output versus the input.

However, according to Shannon, and Nyquist, [20,21] neither the SNRout/SNRin

nor I are sufficient measures of the effectiveness of channel capacity. They only
provide information about the entropy of the signal versus the noise, and the degra-
dation of this entropy during transfer. This is directly related to the potential infor-
mation content of the output. However, it does not say anything about the channel
capacity. Simply speaking, these quantities talk about the amount of information
but they do not say anything about how frequently this information is refreshed.
This fact is immediately obvious if we look at the dimension of I which is the bit.
However, the proper dimension of the information transfer rate is bits/second. This
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is obvious from Shannon’s formula (and the similar Nyquist formula), which was
one of the most important milestones in information theory,

C = Bs log2(1 +
Ps

Pn
) [bits/second], (3)

where C is the channel capacity, Bs is the maximal bandwidth of the signal, Ps is
the maximal mean-square signal amplitude (called “signal power”) and Pn is the
mean-square noise amplitude (called “noise power”). According to Shannon, Eq. (3)
can be interpreted as follows: half of the the logarithmic term is the information
entropy and 2Bs is the frequency of refreshing this information. For the validity
of Eq. (3) in practical cases, any noise outside the frequency bandwidth of the
signal is removed by a linear filter. The bandwidth Bs in the Shannon formula is
the key parameter which refers to the rate of refreshing the information and the
logarithmic term refers to the potential amount of information available at each
refreshment time. As a low value of the information can be compensated by a
high refresh rate, that is by a large bandwidth, the amount of information alone
is meaningless for the characterization of the quality of signal transfer. It is noted
in [19], without using either the Shannon channel capacity or the signal-to-noise
ratio, that the information refresh rate is important.

For example, the elements of Morse code can be described by two bits (short
beep, long beep, short pause, long pause), so two bits are enough to communicate
via this method. The two bits corresponds to the base of the logarithmic term
in Shannon’s formula. The information transfer rate will be determined by the
mean frequency of beeps and pauses, which corresponds to the bandwidth Bs in
the Shannon formula.

The aim of this Letter is to estimate the information transfer rate of neurons
in the stochastic resonance region by using Shannon’s formula. In this region,
the input signal amplitude is less than the value of the threshold potential of the
neuron. Moreover, the linear response approach will be used, which means that the
input signal amplitude is less than the root-mean-square (RMS) noise amplitude.
Thus, the signal response remains linear while that of the noise does not. A further
assumption needed to ensure a linear response is that the firing rate of the neuron
is much lower than the reciprocal of the refractory time.

For the calculations, Kiss’ threshold crossing theory [5, 22] is used. This theory
describes the SNR and bandwidth of the output voltage of a simple neuron model.
The details of the calculations are presented in the Appendix. The main result of
this Letter is the derivation of the channel capacity as follows,

C =
Bn,in

2
√

3
exp

( −U2
t

2Bn,inSn,in

)
log2

(
1 +

(2AUt)2

(Bn,inSn,in)2
)
, (4)

where Bn,in is the bandwidth of input noise, Ut is the excitation threshold potential
of the neuron, Sn,in is the PSD of input noise and A is the RMS amplitude of
the input signal. The main difference between our measure and others [16–19], is
that they calculate an information content type of quantity, which is shown to have
a maximum with noise intensity. What has been calculated is simply the signal-
to-noise ratio expressed by other measures. When referring to optimized channel
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capacity, it is assumed that the signal bandwidth does not change. However, this
is not the case, as shown by (A.5) the noise intensity indeed affects the signal
bandwidth. Alternatively, according to theory [22] and analog simulations [5], the
signal-to-noise ratio at the output is given as

SNRout =
2√
3
Bn,in

(AUt)2

(Bn,inSn,in)2
exp

( −U2
t

2Bn,inSn,in

)
. (5)

Comparing Eqs. (4) and (5), it is obvious that both equations display a maximum
versus the input noise intensity Sn,in given a fixed input noise bandwidth Bn,in.

In Fig. 2, the C and the SNRout functions are plotted versus Sn,in. For high
noise intensities, the value of C is zero when the MS amplitude of the output noise
exceeds the MS amplitude of the output signal, i.e. when Ps/Pn � 1. The actual
value and the shape of C can be modified by linear filtering the output to reduce
the bandwidth when the signal is not fully utilizing all of the possible bandwidth.
For all the channel capacity curves, the stochastic resonance peaks at higher input
noise intensities than the SNRout curve. Moreover, it is interesting to note that
different shapes can be obtained at reduced bandwidths, where the difference in the
behavior becomes pronounced at low noise levels and strong bandwidth reduction.
In the large noise limit, the curves converge to the same level.
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Fig 2. Channel capacity (maximal information rate) C and output signal to noise ratio (SNRout)
of the neuron model (with signal amplitude 0.1 V, threshold 1.0 V, input noise bandwidth 100
kHz). The different C curves represent various fractions of the maximal signal bandwidth, where
the unused band is removed by a linear low-pass filter.
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3. Conclusion

We have highlighted that in order to correctly measure stochastic resonance using
information theory metrics, one must consider the rate of information transfer.
From first principles, the Shannon channel capacity can be expressed in terms of
the output SNR and displays the characteristics of stochastic resonance. Unlike
previous calculations that only consider the entropy, and hence only characterize
the information content at the output, the channel capacity provides the rate of
information transfer and thus is a more useful measure.
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Appendix A.

We start by giving the noise power as Pn = SnBn,eff , where Sn is the power spec-
trum density of the noise (which is flat for white noise) and Bn,eff is the effective
bandwidth of the noise. This means, that given the bandwidth of the signal we can
simply limit the PSD of the noise by employing a simple linear filter with a cut-off
frequency of the signal bandwidth. Thus, the noise bandwidth is equal to the signal
bandwidth Bs, to give

Pn = SnBs. (A.1)

Substituting (A.1) into the Shannon formula of (3) gives the information transfer
rate as

C = Bs log2

(
1 +

Ps

SnBs

)
. (A.2)

Taking that at the output of the STR then Ps becomes Ps,out and Sn becomes
Sn,out and using the signal-to-noise ratio given in (1) we have

C = Bs log2

(
1 +

SNRout

Bs

)
, (A.3)

which gives the channel capacity in terms of the output SNR and signal bandwidth.
To find the maximal bandwidth of the signal Bs, we need to consider Shannon’s

sampling theorem and the mean level crossing frequency ν(Ut), given in [22] as

ν(Ut) =
2
σ

exp
(−U2

t

2σ2

)( ∫ ∞
0

f2S(f) df
)1/2

, (A.4)

where the noise power σ2 =
∫∞
0

S(f) df = Bn,inSn,in. From the sampling theorem,
Bs is approximately equal to half the mean spike frequency, which is half the mean
level crossing frequency due to noise in any direction, thus Bs = ν(Ut)/4. By direct
integration we have

2
σ

(∫ ∞
0

f2S(f) df
)1/2

=
2√
3
Bn,in,
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then combining with (A.4) we find the signal bandwidth as

Bs =
Bn,in

2
√

3
exp

( −U2
t

2Bn,inSn,in

)
. (A.5)

From Eq. (A.3.4) in [22], the output SNR is given as

SNRout =
ν(0)(AUt)2

σ4
exp

(−U2
t

2σ2

)

=
2√
3
Bn,in

(AUt)2

(Bn,inSn,in)2
exp

( −U2
t

2Bn,inSn,in

)
, (A.6)

where ν(0) can be found from (A.4). This can be given in terms of Bs by

SNRout =
(2AUt)2

(Bn,inSn,in)2
Bs. (A.7)

Substituting (A.7) and (A.5) back into (A.3) gives the desired channel capacity of
Eq. (4).
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