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By considering the energy requirements of quantum and classical computers we propose
a criterion to separate the classical from the quantum regime and show that the classical
scaling laws are much more favorable for conventional, general purpose computation.
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It is sometimes suggested, especially in the popular press, that quantum com-
puters [1,2] might be, in some sense, the natural successors of today’s conventional
digital computers, as the current trends in miniaturization reach the atomic level.
While it is true that there are a few special tasks (notably, integer factoring [3, 4])
which a quantum computer could, exploiting some unique quantum mechanical ef-
fects, perform much faster than a classical computer, this does not address the
question of whether it would actually make any sense to push conventional comput-
ers into the quantum domain, for anything other than these very special purpose
tasks.

The energy dissipation and its relation to error-free operation has recently been
identified as one of the most important problems in classical microprocessors [5].
Accordingly, in this note, we address the above issue by comparing the ultimate en-
ergy requirements of quantum and classical computers, based on our recent studies
on classical [5] and quantum [6] systems, respectively. It was shown in [6] that the
minimum error εq that is to be expected when an elementary logical operation is
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performed on a quantum computer satisfies

εq >
h

Eτ
(1)

Here h is Planck’s constant, τ is the duration of the operation, and E is an amount
of energy that needs to be put into the control system, and removed, after a time τ ,
in order to “switch” the state of the quantum bit, or qubit. If the control system is
an oscillator (such as, e.g., an electromagnetic pulse) of carrier frequency f , typically
with f � 1/τ , then f must be used in place of 1/τ in Eq. (1). The error in (1) is
ultimately due to zero-point (“vacuum”) noise in the control system; this is of the
order of hf for an oscillator, and a minimum of h/τ for a “static” field, switched on
and off over the time τ . (See [7,8] for some relevant discussions on the consequences
of zero-point noise in electric circuits.)

By contrast, the fundamental noise limit for classical computers is set by thermal
noise [5], which has an associated energy kT/2 at a temperature T (k is Boltzmann’s
constant). To prevent thermal noise from randomly flipping a bit, the excitation
energy E needs to be made sufficiently large. Then, under some reasonable asump-
tions [5], the error probability is given by

εc >
2√
3

exp
(
− E

kT

)
(2)

where E is the minimum energy dissipated in the classical circuit in the course of the
operation. A comparison of Eqs. (1) and (2) immediately reveals two fundamentally
different scaling laws: in the quantum case the error decreases only inversely as the
energy used, in the classical case it decreases exponentially .

We suggest that these different scalings can be used to effectively characterize
a quantum and a classical regime for a digital computer. The quantum regime
corresponds to

hf > kT (3)

and is entered when the vacuum or zero-point noise in the control system exceeds
the thermal noise at the applicable temperature. Here f is the frequency of the
control oscillator, for an oscillating field, or the gate frequency 1/τ otherwise.

Clearly, by Eqs. (1) and (2), the error rate in the quantum regime will always be
greater than in the classical regime, for the same energy. Conversely, the exponential
scaling shows that it is energetically much more advantageous, in order to achieve
a low error rate, to stay in the classical regime.

Two points need further elaboration. In [6], it was stated that the energy E
appearing in Eq. (1) does not necessarily need to be dissipated, only needs to be put
into and removed from the control system to switch the desired evolution on and off.
This is punctiliously true, but it must be added that there are currently no plans,
in any proposed quantum computer architecture, to “recycle” that energy, which
is, in fact, effectively lost; nor is it clear how one could actually attempt to recycle
it. A static field with a certain energy, for instance, could be switched on and off by
charging and discharging a capacitor, and it is hard to see how one could prevent
the required energy from being dissipated in the discharging circuit. Similarly, one
could think of keeping electromagnetic pulses around for awhile, by bouncing them
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off of ultra-high reflectivity mirrors, but, in order to effectively reuse them, one
would still need some kind of switch to send them off in the proper direction, at
the right time, and that switch is again going to require an energy of the order
given by Eq. (1) if it is to operate in a time τ with an error not exceeding εq. In
short, there are strong indications that at least an amount of energy of the order
of h/εqτ must be dissipated per logical operation, if the switching mechanisms for
the control fields in the quantum computer rely ultimately on conventional classical
electronics.

In fact, the situation is similar in a classical microprocessor. The electric energy,
which is stored in the MOSFET gate capacitors and is controlling the CMOS logic
gate, could, in principle, be extracted by a proper LC circuitry and timed switches
(the same technique that is applied in the “switching” power supplies of today’s
computers). The exception to this is a small part, of the order of kT , of the con-
trolling electric energy. However, while energy dissipation problems are extremely
serious in today’s microprocessors [5], no initiative or realistic hope exists for ex-
tracting this energy in order to use it again. That would need an overhead circuitry
of LC elements and switches which would be more complex than the original mi-
croprocessor, and its L elements would make it extremely bulky. Moreover, very
similarly to the quantum case, because all the switches in this overhead circuitry
would need similar controlling energy as the original CMOS gates, the efficiency
of the energy-recycling operation would be strongly questionable. In conclusion, in
both the classical and the quantum computers, it is only reasonable to consider the
controlling energy pulses of gate operations as irretrievably lost, as we have done
above.

The other point concerns quantum error correction [9], which can, in principle,
reduce the overall failure probability for a logical operation on an encoded qubit,
provided the individual logical operations can be carried out with an error proba-
bility smaller than a certain threshold εth. This reduction is superexponential for
concatenated codes, n levels deep: εn = εth(ε0/εth)2

n

, whereas the energy cost of
concatenation is only exponential in n: En ≥ (hf/ε0)Nn

c , where Nc is the number of
qubits in the base code (e.g., Nc = 7 for a popular code introduced by Steane [10]).
This modifies the scaling (1), so that now one might have, for instance, for the
7-qubit code,

εn = εth exp

[
−

(
ln

εth

ε0

) (
ε0En

hf

)0.36
]

(4)

This is typically better than Eq. (1), but it is still worse than Eq. (2) because of the
large upfront energy cost: one must start out with E ≥ E0 = hf/ε0, which is very
large compared to kT (since hf > kT in the quantum regime and ε0 < εth ≤ 10−4).
A further disadvantage is the sublinear growth of the argument of the exponential
with E; in the above example, the number 0.36 in Eq. (4) comes from ln 2/ ln 7,
where 2 is the number of total single-bit errors that cause the code to fail, and 7 the
number of physical qubits used to encode a logical qubit. It must be noted, however,
that more efficient codes exist, and concatenation may not even be the best strategy
for special-purpose applications; see [11] and references therein for very thorough
discussions of these points. Nonetheless, the general qualitative differences between
quantum and classical cases remain, broadly speaking, as indicated above.
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Yet, even this fails to tell the whole story. The quantum error correcting codes
considered in [9–11] are necessarily complex because they are designed to prevent
errors fatal to quantum algorithms; but if all one wants to do is to run a classical
algorithm on quantum hardware, one only needs protection against one kind of error
(namely, bit flips), and this can be provided comparatively easily by the quantum
generalization of classical repetition codes. Such codes would use 2n + 1 qubits to
encode a single logical qubit, and provide protection against n bit-flip errors; if ε
is the probability of a single-bit flip, the total failure probability would then scale
as εn+1 ∼ exp((n + 1) ln ε), where n is of the order of the total energy, so for these
codes one again would have an exponential decrease of the error probability with
the energy dissipated, just as in the classical regime.

Nonetheless, and even though the threshold for these codes is very moderate,
one still has to pay an upfront energy penalty, relative to the classical case, and
this would still be substantial. For instance, according to Eq. (2), to achieve the
current error rates of about 10−25 of conventional computers, it would theoretically
be sufficient to dissipate an energy of about 58kT , in the classical regime. In
contrast, in the quantum regime, we find it would be near-optimum in this case to
start out with a single-qubit failure probability ε of the order of 0.1 (and therefore
a minimum energy, per logical operation on a single physical qubit, of about 10hf),
which requires a scale-up in computer size of about 2n+1 = 107 (this follows from a
careful calculation, keeping track of combinatorial factors), and thus a total energy
of at least 1070hf per logical operation on an encoded qubit. With hf > kT , this
is easily seen to be at least two orders of magnitude larger than the classical result.

There are, of course, other inconveniences that would arise from having to rely so
heavily on error correction, such as the scale-up in the physical size of the computer,
already mentioned, and additional cycles (and energy) lost to error diagnostic and
correction.

All in all, our conclusion is that, from an energy-efficiency point of view, there
seems to be no reason why one might want to run a conventional computation on
“quantum hardware;” on the contrary, it appears to be energetically favorable to
keep conventional, general-purpose computers away from the quantum regime whose
characteristic scaling we have identified here. We should stress, however, that this
logic need not apply to special-purpose quantum computers, such as those that
might be built solely to, for instance, run the quantum factoring algorithm [3, 4].
We conjecture that whether such machines are ever built will probably depend,
ultimately, on whether that specific application is still of strategic importance a
decade or two from now.
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