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Detecting Harmful Gases Using
Fluctuation-Enhanced Sensing

With Taguchi Sensors
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Abstract—Sensing techniques are often required to not only be
versatile and portable, but also to be able to enhance sensor infor-
mation. This paper describes and demonstrates a new approach to
chemical signal analysis that we call fluctuation-enhanced sensing.
It utilizes the entire bandwidth of the sensor signal in contrast to
more conventional approaches that rely on the dc response. The
new principle holds prospects for significantly reducing the neces-
sary number of sensors in artificial noses and tongues, and it can
provide improved sensitivity.

Index Terms—Gas electronic noses, intelligent sensors, noise,
spectral analysis.

I. INTRODUCTION

ARTIFICIAL noses and tongues are sophisticated systems
used in the identification of complex mixtures of chemi-

cals (see, for example, [1]). They employ a number of different
sensors, which work simultaneously to obtain enough informa-
tion for the identification of the mixtures. It is relatively straight-
forward to demonstrate by using the theory of linear equation
sets that, to uniquely identify a mixture of components, the
minimal number of sensors with different responses is [2].
Note that the mathematical treatment in [2] assumes the most
ideal case, where the sensor responses are independent, linear,
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and additive for multiple gases. Less ideal cases, such as non-
linear response or nonindependent response, need more sensors.

Due to the relatively fast aging and the deterioration of prop-
erties, the need for reducing power requirements, and the need
for portability and versatility, there is a strong interest in identi-
fying the methods that reduce the number of sensors needed in
artificial nose and tongue applications.

This fact makes it obvious that signal-processing tools, which
can extract more independent information from a single sensor,
can be very useful. The primary aim of this paper is to demon-
strate that this goal is possible [2]–[6] by measuring and ana-
lyzing the stochastic component of the sensor signal. Experi-
mental and theoretical investigations with Taguchi and surface
acoustical wave sensors have shown that even a single sensor
may be sufficient to qualify as an electronic nose [2]–[8]. One
of the promising applications of fluctuation-enhanced chemical
sensing is to develop a portable versatile electronic nose for de-
tecting harmful gases. In this paper, we present the general idea
of the method and demonstrate its viability with harmful gases.
We also present the various aspects of the evaluation of data for
sensing various gases with controlled concentration in high-pu-
rity, dry synthetic air.

II. FLUCTUATIONS INDUCED IN CHEMICAL SENSORS

BY THE CHEMICAL ENVIRONMENT

Superficial examination identifies chemical sensor fluctua-
tions as conventional “noise,” while, in fact, this stochastic com-
ponent contains an important part of the chemical signal. Only
this part of the sensor noise is employed (or examined) and can
be identified as a signal that is related to the exposure to the
sensed chemical. This exposure-induced dynamic signal gener-
ally has two different sources.

A. External Sources

The external source of the spontaneous fluctuations is from
the occupation of the sensor by the agent molecules. At the mi-
croscopic level, molecular adsorption and desorption is a sto-
chastic process due to random residence and absence times.
Recent work [10] shows that treating adsorbed thin, multilayer
films as varying about a mean thickness holds prospects of pro-
viding an accurate description of thin-film adsorption isotherms
that theory based on constant film thickness does not provide
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Fig. 1. Proposed arrangement of fluctuation-enhanced sensing. The original processing means measurement of the average value.

(i.e., FHH theory). In addition, if local variability in sensor prop-
erties, such as adsorption substrate physical dimensions in gran-
ular film sensors, is included (where adsorption energy is de-
pendent on substrate size [11]), then an additional intrinsically
variable contribution to film thickness and signal dynamics is
added. In sum, the sources of variability in sensor adsorption
imply spontaneous density fluctuations of the amount of ad-
sorbed chemicals [2], [12], [13]. This kind of noise is a char-
acteristic feature also in quartz and other kinds of solid-state
resonators [12], [13].

B. Internal Sources

The internal source of the spontaneous fluctuations is induced
by the interaction of the molecules of the agent with the sensor
surface or with the bulk of the sensor. This kind of fluctuations
can have many different modes of manifestation. On one hand,
the adsorbed molecules can modify the standard fluctuation gen-
erating mechanisms existing in the active zone of the sensor. Al-
ternatively, the diffusive motion of the agent molecules (which
is a random walk at the molecular level, in the active zone of the
sensor) can lead to various diffusive fluctuations phenomena [9],
[11]. These diffusive motions, which can dominate the fluctua-
tions at low frequencies. One example, which has been studied
in details [9], is the occupation-fluctuation of the sweet spot of
surface acoustic wave (SAW) devices due to surface diffusion
(random walk) of the agent molecules.

As the spectral analysis provides a frequency spectrum,
which is already a pattern, one sensor can replace a number
of sensors used in the classical way of evaluating the dc re-
sponse. The spontaneous fluctuations around the average value
of the output, which are the additive stochastic component
(noise) of the sensor signal, utilize the entire bandwidth of the
sensor signal in contrast to the dc response. Therefore, from a
chemical-sensing point of view, it is proper to call this method
fluctuation-enhanced sensing (name originating from J. Audia,
SPAWAR, U.S. Navy).

III. SENSING METHOD

The in situ sensing method is used under the same conditions
as standard chemical sensing [2]. The only difference is that the
ac component of the sensor signal is pre-amplified and spectral
analysis is conducted on its stochastic component as shown in
Fig. 1. The patterns generated by the spectrum and the dc com-
ponents represent the output information provided by the sensor.
It would require an array of sensors to obtain the same output
information by the classical procedure.

The in situ method utilizes the internal and external sources
of spontaneous fluctuations at the same time (see Section II),
though one of them may be dominant in the whole frequency

range or in a part. Until the specific processes generating the
noise in particular materials exposed to particular chemicals are
identified, the role of internal noise versus external noise will be
unknown.

In [2, Fig. 2], patterns generated by various natural oleo-
resinous odors in a semiconductor Taguchi sensor (NAP 11 se-
ries, RS Component 286–620, used as air quality sensor) are
shown. The data indicate that the “fingerprint,” where

is the frequency and is the power density spectrum of
the voltage fluctuations, is sensitive enough to detect these ole-
oresinous odors and to indicate that they are different [2].

When we have a characteristic spectral pattern, the question
arises of how many sensors working in the classical way would
be necessary to produce that information. [2] suggests that by
using power spectral analysis one can have a single sensor re-
placing an array of at least six sensors.

IV. RESULTS AND DISCUSSIONS

Using the power spectra to generate characteristic patterns for
fluctuation-enhanced sensing of chemicals is an easy solution;
however, it is not the only solution. For example, power spectra
are not sensitive to the probability density of the noise ampli-
tude, or to higher order fluctuations/correlations hidden in the
process. This situation assumes a non-Gaussian noise process.
Other statistical tools can be a richer source of information,
though their use may be more computationally demanding. For
example, [7], the bispectrum function

(1)

which is the function of two frequencies and , provides a
two-dimensional pattern (however, contains more informa-
tion than only for non-Gaussian noise processes). Here,

is the third-order auto-
correlation function of the process . [7] shows the two di-
mensional bispectrum patterns generated by oleoresinous odors
and laboratory air. The applied thick-film sensor (NAP 11 series,
RS Component 286–636, used as CO sensor) had a large signal
volume so the noise was only weakly non-Gaussian, in accor-
dance with the central limit theorem for the addition of elemen-
tary fluctuations. [8] shows bispectra analysis of the same kinds
of sensors with ethanol, and hydrogen in synthetic air. The appli-
cation of this or similar kinds of methods is for nanometer sized
sensors, where the non-Gaussian character can be extremely
strong.

Up until now, the concentration of the sensed gas has not
been quantified. In addition, the signal separation of multiple
gas responses has not been achieved. Instead, only the ability to
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Fig. 2. Normalized spectra measured on homemade (Oulu, Finland) thick-film sensors (SnO ), at 150 C temperature, with H S gas and synthetic air. (a) 1=R
normalized power spectrum fS (f)=R , (b) 1=R normalized power spectrum fS (f)=R , (c) 1=R normalized power spectrum fS (f)=R , and (d) 1=R
normalized power spectrum fS (f)=R .

selectively sense different gases has been demonstrated by ex-
perimental data. The rest of this section presents experimental
data regarding the sensing of various gases of controlled con-
centrations in high-purity, dry synthetic air. Various aspects of
the evaluation of the data will be discussed.

The experimental setup consisted of a gas mixer, a stainless-
steel sensor chamber, a Stanford Instruments preamplifier, and
a Stanford Instruments spectrum analyzer. The passive current
generator driving the sensor film (two-contact arrangement) and
the preamplifier were battery powered. During the experiments,
to avoid temperature fluctuations caused by the gas flow, we
stopped the gas flow for the duration of the experiment, or, if we
kept the flow, we ran preliminary tests to check that the flow was
not interfering with the fluctuations in the measured frequency
range.

In Fig. 2(a), results obtained on homemade thick-film sen-
sors (SnO ), at 150 C temperature, with H S gas and synthetic
air are shown. The log-log plot for the function of
the measured voltage, where is the frequency and is
the voltage spectrum, is used for analysis. The reason for using

is purely perceptual: Most of the measured spectra
are scaling roughly as ( spectrum) and the human eye
can discriminate small deviations from a spectrum in this
way. The instantaneous resistance noise amplitude and
the measured voltage noise amplitude are related via Ohm’s law

which for the spectra relevant to and implies a re-
lation scaling with the square of the driving dc current. The main
information is contained in the shape of the pattern and not by
the actual value of the spectrum at a given frequency. The main
objective of this study was not the shape but the intensity of the
normalized resistance noise spectrum. In these experiments, the
concentration of the measured gas is known, so it is proper to
evaluate the normalized resistance power spectrum
[14], where is the main resistance of the sensor, because in
a linear system, with the number of fluctuators proportional to
the concentration, this quantity would also, therefore, be pro-
portional to the concentration. For the validity of this statement,
one has to assume that the dynamic behavior of the fluctuators
does not depend on the concentration. Therefore, to investigate
the origin of the noise, from the measured voltage noise and
the resistance, the quantity was determined. Surpris-
ingly, the normalized power spectra is almost independent of the
gas concentration, it has at most a square-root like dependence,
which indicates that one or several of the assumptions described
above is invalid here.

To explore the possibility of using other kinds of normaliza-
tion for sensing, using data from the same sensor, we have tested
the normalization, which provides distinct levels of
response for the different concentrations, see Fig. 2(b). More-
over, the gap between the levels of response for the lowest con-
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Fig. 3. Normalized spectra measured on homemade (Oulu) thick-film sensors (SnO ), at 150 C temperature, with H gas, NO gas, SO gas, and synthetic air.

Fig. 4. Measurement circuit relevant to Figs. 2 and 3. The capacitor is chosen
so that the low-frequency range should not be limited by the RC cutoff.

centration and the “background” level of synthetic air is opening
up by subsequent measurements due to memory effects in the
sensor. Another, even more practical, normalization can be ap-
plied by using the measured voltage power spectrum in-
stead of using the resistance power spectrum . It is the

that we measured first and the that is evaluated by
taking into account the measurement circuit and the value of el-
ements in it. Using directly the values for calculating the
normalized spectra or should not be phys-
ically different, as far as the obtained normalized noise level
is concerned; however, it may have important implications for
practical sensing as shown in Fig. 2(c) and (d) and Fig. 3. Using

, the level of response against H S becomes totally
independent of the concentration, as shown in Fig. 2(c). Interest-
ingly, the same level of response is shown against 500 ppm H
gas (unfortunately, we have not had the opportunity to test other
concentrations). Both the H S and H gases show a relatively
flat response with this sensor. On the other hand NO and SO
gases produce a quite different shape, with an abrupt rise toward
low frequencies. Fig. 2(d) shows the advantage of the normal-
ization . The level of the H S curve at 1 ppm concen-
tration is six orders of magnitude higher than the highest level
for synthetic air. This fact indicates that the normal-
ization provides a high sensitivity well below the ppm level. In
the observed range, the response looks logarithmic like. Using
the fact that the 1 to 10 ppm range occupies about three orders

of magnitude interval, we can extrapolate that the ultimate sen-
sitivity of the method is below 0.1 ppm. Finally, Fig. 4 is the
measurement circuit relevant to Figs. 2 and 3.

V. CONCLUSION

These investigations demonstrate that the use of statistical
analysis of agent-induced fluctuations can strongly enhance
sensor information when using single gases. It is particularly
important that sensors designed for specific purposes can also
be used to detect and identify other agents. It appears that a
single sensor has the potential to detect and identify various
harmful agents. However, the signal separation and gas recog-
nition with multiple gas components and the various statistical
analysis methods are still problems that will require additional
investigation.
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