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We propose a method to determine single hyperspace vectors (product strings of noise-

bits) by classical means with the same effectiveness as the results using time shifted
noise-based logic. A system of binary linear equations based on the amplitudes of the

hyperspace vector and the reference noise-bits is set up and solved after enough inde-

pendent information is collected. The resulting error probability (the chance of getting
no answer) has approximately an exponential decay with the time of measurement.

1. Introduction

Noise-based logic (NBL) [1-9], on the contrary of its name, is a deterministic logic

scheme. The logic information is carried by independent stochastic processes, their

products and their superpositions [1]. In non-squeezed NBL, 2N independent refer-

ence noises are needed to form N noise-bits: one for each L and another one for each

H value and N -bit long products (product-strings) represent hyperspace vectors.

The identification of a single product-string (hyperspace vector) is necessary af-

ter a quantum-computing-type calculation with a simple output (such as the binary

representation of a prime number) and it is one of the challenging questions. Re-

cently, ”time shifted noise-based logic” has been introduced [9], which is constructed

by shifting each reference signal with a small time delay. This modification implies

an exponential speedup of single hyperspace vector identification compared to the

former case and it requires the same, O(N) complexity as in quantum computing.

The goal of the present Letter is to show that the identification of such a single

hyperspace vector can be done with similar complexity without the need of time

shifted noise-based logic. Thus this task can be carried out within the original

noise-based logic framework, which uses the same clock timing for each reference

component.
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2. Problem setting

Let N denote the number of bits and for k = 1, 2, . . . , N let

Ak, Bk : {1, 2, . . .} → {−1, 1} (1)

be random telegraph waves (RTW). As for the physical realization, each function

Ak or Bk represents a sequence of electric impulses with intensity Ak(t) (or Bk(t))

in every time interval (t − 1, t) between consecutive clock signals for t = 1, 2, . . ..

We are given a binary string x0, x1, . . . , xN consisting of terms 0 or 1 as usually

which will be transformed into the product wave

W := X1X2 · · ·XN where Xk = Ak if xk = 1 and Xk = Bk if xk = 0. (2)

Problem 0. (Measurement problem). Knowing only the product wave W , determine

the 0-1 string x1, . . . , xN satisfying (2).

Our purpose will be to develop an algorithm based on an infinite system of binary

linear algebraic equations describing the relationships encoded in (2). Given the

waves W,A1, B1, A2, B2, . . . , AN , BN , for T = 1, 2, . . ., our algorithm reads the im-

pulses W (T ), A1(T ), B1(T ), . . . , AN (T ), BN (T ) and it determines if there is only a

unique string x1, . . . , xN suitable for solving Problem 0 on the basis of the gathered

data as far. Having found the first time

S = S(W,A1, B1, . . . , AN , BN ) (3)

with this uniqueness property, the algorithm provides the precise guess for the

sequence x0, x1, . . . , xN and then stops. We shall call S the time requirement

for complete measurement. In Definition 3 below we formulate a precise alge-

braic construction for S. Notice that the possibility S = ∞ cannot be excluded

as e.g. if W (t) = Ak(t) = Bk(t) ≡ 1. However, such algebraically extreme

cases are practically improbable due to the random construction of the waves

Ak, Bk. Actually, throughout the whole paper we regard the terms Ak(t), Bk(t)

(k = 1, . . . , N ; t ∈ Z+) to be completely independent random variables such that

Prb
(
Ak(t)=(−1)s

)
=Prb

(
Bk(t)=(−1)s

)
=1/2 (s = 0, 1). (4)

Definition 1. Introduce the below transformed variables resp. product wave:

Ck := AkBk (k = 1, . . . , N), U := WB1B2 · · ·BN . (5)

Observation 1. Due to the identities A2
k = B2

k = 1, we have Xk = Cxk

k Bk, and

hence X1X2 · · ·XN = W ⇐⇒ (X1B1)(X2B2) · · · (XNBN ) = U that is

Cx1
1 Cx2

2 · · ·C
xN

N = U. (6)

Definition 2. Introduce the matrix C :=
[
ctk
]∞
t=1

N

k=1
respectively the column

vector u :=
[
ut
]∞
t=1

as follows: we let

ctk :=
[
1 if Ck(t) = −1, 0 if Ck(t) = 1

]
, (7)

ut :=
[
1 if U(t) = −1, 0 if U(t) = 1

]
. (8)
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Observation 2. For any time t we have

(−1)u(t) = U(t) = C1(t)x1 · · ·CN (t)xN = (−1)ct1x1+···+ctNxN .

Hence the relationship U = Cx1
1 · · ·C

xN

N is equivalent to the following (infinite)

system of linear equations over the field Z2 := {0, 1} of two elements

c11x1 + c12x2 + · · ·+ c1NxN = u1

c21x1 + c22x2 + · · ·+ c2NxN = u2
...

...
...

... (9)

ct1x1 + ct2x2 + · · ·+ ctNxN = ut.

...
...

...
...

Remark 1. The answer to Problem 0 is nothing else than to find the solution

x1, . . . , xN ∈ Z2 of the above infinite system of linear equations. Notice that this

system has a solution by assumption. On the other hand, for T →∞ the columns

of the submatrix C(T ) :=
[
ctk
]∞
t=1

N

k=1
become linearly independent (over Z2) with

probability 1 since the variables Ck(t) (1 ≤ t ≤ T, 1 ≤ k ≤ N) are completely

independent in stochastic sense.

Definition 3. Let S denote the minimal index for which the columns of C(S)

are linearly independent (over Z2). Notice that S is also a random variable with

lim
s→∞

Prb(S > s) = 0. Henceforth let us write

πs := Prb(S = s), πt := Prb(S ≥ t). (10)

Notice that πt and πt are the probabilities of for our measurement algorithm to stop

exactly at time t and to fail before time t, respectively. Actually we have πt =
∞∑
s=t

πs.

Problem 1. Find sharp asymptotic estimates for πt.

Problem 2. Considering large values N of bits, is it possible to find a function

N 7→ tN such that tN <<2N and πtN tends to zero with exponential rate as N→∞.

Remark 2. 2N is the lowest time limit T for the complete orthogonality of the

product functions Cx1
1 · · ·C

xN

N when restricted to the interval {1, . . . , T}).

3. Results

To answer Problems 1-2, we are going to investigate the Gaussian elimination al-

gorithm applied to the matrix C establishing row indices t1 < t2 < · · · < tN such

that row t1 is the first non vanishing row in C and, for each k = 2, . . . , N , row tk
is the least index with row tk being linearly independent of rows t1, . . . , tk−1 in C.
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To do so, we can proceed to find entries with indices (t1, k1), (t2, k2), . . . , (tN , kN )

in the following manner.

Algorithm.

Let G0 := C the matrix introduced in Definition 2, K0 := {1, . . . , N}.

• Step 1) Let t1 be the row index of the first nonzero row in G0 and let k1
be the column index of the first non zero entry in this row. Then we set

K1 := K0 \ {k1} and we let G1 to be the matrix obtained with elimination

killing the subcolumn below the entry t1, k1).
...

• Step d) Let td be the first row index > td−1 such that row td in Gd−1 does

not vanish but all the rows of of Gd−1 vanish between row td−1 and td.

Then let kd be the minimal index in Kd−1 such that the entry of Gd−1 with

index (td, kd) does not vanish. We define Kd := Kd−1 \{kd} and the matrix

Gd is obtained with elimination from Gd−1 by killing the subcolumn below

the entry (td, kd).

Theorem 1. Let 0 = t0 < t1 < t2 < · · · < tN be arbitrarily given integers and let

nd := td − td−1 − 1 (d = 1, . . . , N). Then we have

Prb
(

the Algorithm produces the row indices t1, . . . , tN

)
=

N−1∏
d=0

[
2nd(N−d)

(
1−2d−N

)]
.

Proof. Prb
(

the Algorithm produces the row indices t1, . . . , tN

)
=

=
[
Prb

(
the Nn0 entries of the first n0 rows vanish

)
×

×
N−1∑
r=0

Prb
(
r zeros stand before a term 1 in row t1

)]
×

×
[
Prb

(
the (N − 1)n1 entries of the first n1 rows after the t1th vanish

)
×

×
N−2∑
r=0

Prb
(
r zeros before a 1 in the part with column indices in K1 of row t2

)]
×

...

×
[
Prb

(
the (N − 1)n1 entries of the first n1 rows after the t1th vanish

)
×

×
N−2∑
r=0

Prb
(
r zeros before a 1 in the part with column indices in K1 of row t2

)]
.
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Since the entries of C assume the values 0-1 with probability 1/2 independently,

hence

Prb
(

the Algorithm produces the row indices t1, . . . , tN

)
=

=

N−1∏
d=0

[
2−nd(N−d)

(
2−1 + 2−2 + · · ·+ 2d−N

)]
=

=

N−1∏
d=0

[
2−nd(N−d)

(
1− 2d−N

)]
.

Corollary. For any s ≥ N we have πs ≤
( s
N

)
2N−s.

Proof.

We know that πs =
∑

1≤t1,··· ,tN=s

Prb
(

the Algorithm produces the row indices t1, . . . , tN

)
.

Therefore

πs =
∑

n0+···+nN−1=s−N

N−1∏
d=0

[
2−nd(N−d)

(
1− 2d−N

)]
≤

≤
∑

n0+···+nN−1=s−N
exp2

(
−

N−1∑
d=0

nd(N − d)
)
≤

≤
∑

n0+···+nN−1=s−N
exp2

(
−

N−1∑
d=0

nd

)
=
( s
N

)
2N−s

due to the combinatorial fact that #{(n0, . . . , nN−1) : n0 + · · · + nN−1 = s −N}
coincides with the number of repeated combination of dividing s−N elements into

N parts.

Theorem 2. For t ≥ N we have πt ≤ 2N+1−t
N∑

k=0

(
t

k

)
.

Proof. Observe that, in general,
( s
N

)
xN−s =

1

N !

dN

dxN
xs. Thus, by the Corollary,

πt =

∞∑
s=t

πs ≤
∞∑
s=t

( s
N

)(1

2

)N−s

=
1

N !

dN

dxN
xt(1− x)−1

∣∣∣
x=1/2

. (11)

According to Leibniz‘ rule,

dN

dxN
xt (1− x)−1 =

N∑
k=0

(
N

k

)
dk

dxk
xt

dN−k

dxN−k
(1− x)−1 =

=

N∑
k=0

(
N

k

)
t(t− 1) · · · (t− k + 1)xt−k(−1)N−k(N − k)!(1− x)−(N−k+1).
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Taking into account that xt−k(1 − x)−(N−k+1)|x=1/2 = 2k−t+N−k+1 = 2N+1−t,

from (11) we get

πt ≤
1

N !

N∑
k=0

(
N

k

)
t!

(t− k)!
(N − k)! 2N+1−t =

N∑
k=0

(
t

k

)
2N+1−t.

Corollary. For t ≥ N we have πt ≤ 2etN/2t−N .

Proof. Putting the inequalities
(
t
k

)
= t(t − 1) · · · (t − k + 1)/k! ≤ tN/k! (k ≤ N)

in Theorem 2, we get πt ≤ 2tN2N−t
∑

k k!−1.

We are now ready to answer Problem 2. Notice that as far we used an arbitrarily

fixed number N of bits (and we suppressed the parameter N in the notation in the

notation πt = π
(N)
t ). We are now interested in finding reasonably small function

N 7→ t(N) such that π
(N)
t decreases exponentially to zero as N → ∞, or which is

the same, we have lim supN→∞N−1 log2 π
(N)
t(N) < 0 or even = −∞.

Proposition 1. Given any small constant ε > 0, with the choice t(N) :=

N(log2N)1+ε we have limN→∞N−1 log2 π
(N)
t(N) = −∞.

Proof. In this case

1

N
log2 π

(N)
t(N) ≤

1

N
log2

(
2e
[
N(log2N)1+ε

]N
2N(log2 N)1+ε−N

]
=

=
1 + log2 e

N
+ 1 + (1 + ε) log2 log2N + log2N −

(
log2N)1+ε → −∞.

Remark 3. In conclusion, whatever small ε > 0 we choose, the probability that the

measurement algorithm fails in less than tε = N(log2N)1+ε time steps is scaling as

2−N in the limit of large N .
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