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Abstract

Experimental results of gas sensing by thermoelectric voltage fluctuation measurements in gas sensors are presented. The applied sens
consist of monodispersed Sp@anoparticles films, with a mean diameter of 20 nm. The voltage fluctuations in the sensor films were observed
with and without external voltage bias and its power density spectrum exceeded at least a thousand times its thermal noise. The power dens
spectrum of the observed stochastic signal changed in different gases by a factor of three while the change of the sensor resistance was ol
2-3%. The stochastic signal observed in the sensor without external voltage bias is caused by the temperature gradient in the film. The resul
show that thermoelectric fluctuations, without external voltage bias, can be applied for use in gas sensing.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction lyze gas mixture$d] because each sensor provides only one
component (point) of a pattern which is needed for gas recog-
It has been knowfi] for a long time that the processes of nition. This fact implies a variety of practical problems that
gas adsorption on porous semiconductor surfaces can changkmit their practical applications. For example, the power con-
the electrical properties of the surface. Taguchi gas sensorssumption, and the strong need and high cost of sensor main-
are based on grainy metal-oxide semiconductor films (e.g.tenance are among the most significant problems. Promising
SnQ) with transport properties that are very sensitive to vari- results have been observed when the fluctuations of the gas-
ations of the composition of the ambient gas. Usually, the DC sensitive film are applied for sensifiy6]. Then, the statisti-
resistance is measured and used for gas sensing in many praeal measures of the fluctuations provide the required pattern,
tical application$2]. Significantly greater sensitivity (DCre-  thus a single sensor can be used as a complete electronic nose
sistance change) has been observed with smaller grain sizegjetecting complex mixturg$].
even at lower substrate temperatU@jsPresently, most arti-
ficial noses need an array of different sensors in order to ana-

- 2. Description of the sensors
* Corresponding author. Tel.: +1 979 847 9071, fax: +1 979 845 1729.
E-mail addresslaszlo.kish@ee.tamu.edu (L.B. Kish).

The gas sensors were prepared from monodispersegl SnO
1 Gdansk University of Technology, WETIl, ul. G. Narutowicza 11/12, 9 prep P gl

80-952 Gdansk, Poland. nanopartl_c_les v_wth amean particle dl_amet_er of 2dAmThe
2 The Angstibm Laboratory, Department of Materials Science, Uppsala gas-sensitive film consists of a particle size of about 20 nm.
University, P.O. Box 534, SE-751 21 Uppsala, Sweden. The structure of the sensors is presenteldign 1 (top view)
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not exceed 0.2 I/min in order to minimize possible gas turbu-
lence effects. The microscopic voltage fluctuations across the
gas sensor were amplified and filtered by a Stanford SR560
preamplifier and were recorded and analyzed by a data ac-
quisition unit (PowerLab/4SP, ADInstruments). The power
density spectrum was determined via fast Fourier transfor-
mation using the Welch methd#8]. The gas sensor was bi-
ased by different voltages starting from 0 up to 1.6 V. The
voltage fluctuations of the sensor exposed to ethanol or hy-
drogen stabilized and became stationary after 7 h (ethanol)
and 2 h (hydrogen), respectively. This slow stabilization af-
ter gas exposure is due to the relatively low temperature of
the sensolf = 150°C, which was limited by the present tech-
nology and the required long lifetime. Work is proceeding to
develop sensors that can tolerate higher temperatures.

In all figures where we show spectra, we multiplied the
power density spectrur§(f) by the frequency, which is a
andFig. 2 (side view). The gas-sensitive film is deposited on common fashionwhen plottlngflvke spect_ra, like ours. This
the surface of an interdigitated structure of metal electrodes Makes small changes in the shape easier to obseiye3
by means of low-pressure impactig8i. The 1 mn? struc- shows a.typlcal response of the sensor, with zero e>.<ternal
ture consists of 160 interdigitated fingers (eachmm long) voltage bias, after the volta_lge fluctuations become stationary.
with a width of 2um and an identical separation. The elec- | N€ Observed power density spectrum was atleast a thousand
trodes are implanted in phosphor-doped silicate glass (PSG).t'meS g.reater than the thermal noise of the sensor resistance
This ensures a more homogenous nanoparticle film deposi—RS at this t(_amperature. A small thermoelectric voltage, of the
tion[8]. The electrode structure is enclosed by a heater which °rder of millivolts, between the electrodes was observed due
is embedded in the PSG. A poly-Silayer serves as a heaterelep temperature gradients in the sensor film and a temperature
ment and is mounted on a low-pressure (LP) nitride. The gas-difference between the electrodes. _
sensitive film is situated asymmetrically to the heater layer. In d|ﬁergnt gases, the fluctuations varlled by a fagtor
A temperature sensitive resistor is situated close to the inter-f three while variations of the sensor resistance remained
digitated electrodes. This resistance allows the measuremenVithin 3%. The pattern of the spectrum depended on the am-

of the temperature of the substrate surface. bient gas in a unique way, ségég. 4. It is obvious from
these facts that the spectrum provides significant more sens-

ing information than the simple resistance of the sensor.
With increasing temperature, the intensity of the spectrum
increased progressively as shownFig. 5. Fig. 6 shows a

DC resistance and voltage fluctuation measurements Weretyplcal time evolution of the response of the sensor exposed

performed to test the sensing properties of the Smadopar- to ethanol. When the exposition to ethanol was complete, the
ticle sensor. The sensor was placed in a stainless steel gas
chamber of 1drh volume and exposed to synthetic air,

ethanol (300 ppm) and hydrogen (1000 ppm), both diluted L
in synthetic air. The constant flow of the applied gases did “‘--\__F'fm"“' 300 ppim
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Fig. 1. Micrograph of the gas sensor structure (top view).

3. Experimental results
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Fig. 3. Power density spectrum multiplied by frequericfor the sensor
exposed to synthetic air, ethanol (300 ppm), hydrogen (1000 ppm); sensor
Fig. 2. A schematic view of the gas sensor structure (side view). temperature 150C. Resistance was abolg = 510S2.
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Fig. 4. Relative changes of power density specti®uff) to the spectrum
Sisdf) estimated for the sensor exposed to the synthetic air vs. freqfiency
sensor temperature 15G.
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Fig. 6. Changes of voltage noise spectrum after sensor exposing to ethanol
(300 ppm); sensor temperature T%) gas flow started 6 h before first noise

spectrum gradually returned to the original level. This indi- o
ieglstratlon at=0.

cates the total recovery of the sensor surface after the ethano
exposure.

The situation with hydrogen was very differeiig. 7). its shape. This is an indication of drift related changes as a
The stabilization time of the sensor did not exceed 2 h. How- result of the diffusive fluctuation dynamics.
ever, the sensors developed a strong memory as a result of
exposure to hydrogen. Even several days after finishing the
exposure to hydrogen, the spectrum stayed at the newly ac4. Discussion
quired level. The slope of the spectrum in a log—log plot
around—1.5, in the high-frequency limit, which suggests the The observed fluctuations do not change their intensity
presence of a diffusion noise procg$4,12] caused by hy-  and dynamics when the DC voltage across the sensor is
drogen diffusing through the film between the electrode fin- lower than 100 mV. At zero voltage bias, the resistance fluc-
gers. When, at non-zero bias, the voltage across the sensotuations of the nanoparticle film cannot generate the ob-
exceeded 0.1V the spectrum started to increase and changegerved voltage fluctuations because of Ohm’s law. This fact

and the strong dependence of the observed stochastic sig-
) nal on the sensor temperatukgd. 5 suggest that the volt-

S R S age fluctuations in this regime are generated by processes

which are sensitive to the temperature and temperature dif-
/=400 Hz
// =]
s | /=800 Hz i _
[ // ] :Ia
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T[K] Fig. 7. Sensor exposed to synthetic air after being exposed to hydrogen
(1000 ppm) at sensor temperature 1680The dashed line with slope0.5
Fig. 5. Changes of power density spectrgg(f) vs. temperatur&, for the corresponds to a spectral slope-ef.5 which is the signature of a defect

sensor exposed to synthetic air after finishing burn in process. diffusion noise process.
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ferences within the sensor structure. The detailed analysisto a spectral slope 6f1.5. The crossover frequenigy~ 6 Hz,

of the sensor structure makes it plausible to suppose an in-where the slope changes, indicates a geometrical crossover
homogeneous temperature distribution in the nanoparticle where the diffusion process reaches through the junction re-
film: gion during the time given by reciprocal frequeri@ép,13]

. . . . Thecharacteristic lengthof the junction region has to satisfy

e The heating layer is located asymmetrically below the in- L <2um because of the distance between the electrode fin-

terdigitatgd electrpde structure; ) gers, see Sectidh This implies that the diffusion coefficient
e The heating layer is located asymmetrically below the gas- of fragmentsD = xfL 2< 7.5x 10~7 cn/s. The shape of the

sensitive layer. spectrum did not indicate a clear diffusion noise mechanism

Both facts can contribute to temperature inhomogeneities With a single type of diffusor when the sensor was exposed to
across the junctions formed by the metal electrodes and theethanol. One explanation is that the ethanol molecules prob-
nanoparticle film. The thermoelectric voltage is proportional ably broke into fragments of various sizes with a range of
to the temperature gradienfl which is roughly proportional  diffusion coefficients and crossover frequencies. In the volt-
to the difference of the sensor temperature and the ambient2ge rangéJpc >100mV the fluctuations get dominated by
temperaturg10]. The work function of the electrode—film the resistance fluctuations (conductance noise) in the film
junctions is modulated by the local concentration of diffusing (Fig. 8. The voltage spectrum density becomes proportional
fragments of absorbed gases which results in a fluctuation ofto the square of the applied DC voltaig( /) ~ U3 when
the thermoelectric voltage. The change of the power density Ubc = 0.1 V.
spectrum at a given frequency is due to two separate fac-
tors. First, the amplitude of the induced thermoelectric volt-
age fluctuations is roughly proportional to the temperature 5 conclusion
gradient. Second, the diffusion of the defects is a thermally

activated process which means a temperature dependence in - Thg ghserved fluctuations without bias voltage are very in-
the speed of the fluctuatpns. The two effects, at a given fre- jansive and are generated by non-homogenous temperature
quency, cause a well-defined temperature dependence of thgjistribution. This thermoelectric effect suggests a new fam-

spectrum Kig. 5). The geometrical aspect of the proposed jy of gas sensors with a special purpose heating system for
mechanism can explain the spectra of voltage fluctuations Ofutilizing the thermoelectric fluctuations.

the sensor after it is exposed to hydrogen. A diffusion noise

spectrum, with slope aroundl.5 in log—log plot in the high-

frequency limit, is shown ifrig. 7. Due to the multiplication

by the frequency, the dashed line with slep@ 5 corresponds ~ Acknowledgements
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